#include <gmm.h>
Inheritance diagram for FD::GMM:


Public Types | |
| enum | GMM_Mode { real, accum } |
Public Member Functions | |
| GMM (int nb_gauss, int dim, Covariance *(*cov_new)(int)) | |
| nb_gaussians (0) | |
| mode (accum) | |
| nb_frames_aligned (0) | |
| dimensions (1) | |
| using_gaussianIDs (false) | |
| void | save (std::string file) |
| int | get_nb_gaussians () const |
| Gaussian & | gaussian (int i) const |
| void | accum_to_gaussian (int i, const float *fr) |
| void | init (std::vector< float * > frames) |
| void | kmeans1 (std::vector< float * > frames, int nb_iterations=1) |
| void | split1 () |
| void | kmeans2 (std::vector< float * > frames, GMM *gmm) |
| void | adaptMAP (std::vector< float * > frame, GMM *gmm) |
| void | to_real () |
| void | reset_to_accum_mode () |
| Score | minDistance (float *fr, Covariance *cov) const |
| Score | score (float *fr) const |
| void | binary_split () |
| std::vector< Score > | minDistance (std::vector< float * > fr) const |
| std::vector< Score > | score (std::vector< float * > fr) const |
| void | toIDsUsing (GaussianSet &gauss) |
| void | toPtrsUsing (const GaussianSet &gauss) |
| DiagGMM * | createDiagGMM () |
| virtual void | printOn (std::ostream &out=std::cout) const |
| void | readFrom (std::istream &in=std::cin) |
Public Attributes | |
| __pad0__: gaussians(std::vector<RCPtr<Gaussian> >()) | |
Protected Attributes | |
| std::vector< RCPtr< Gaussian > > | gaussians |
| std::vector< float > | apriori |
| int | nb_gaussians |
| int | mode |
| int | nb_frames_aligned |
| int | dimensions |
| bool | using_gaussianIDs |
| std::vector< int > | gaussianIDs |
Friends | |
| std::istream & | operator>> (std::istream &in, GMM &gmm) |
|
||||||||||||||||
|
Construct a GMM with nb_gauss gaussians, dim dimensions and a covariance pseudo-factory |
|
||||||||||||
|
Accumulates (adds) the frame to the i'th gaussian |
|
||||||||||||
|
Perform MAP adaptation (using another GMM to score) |
|
|
Double the number of gaussians |
|
|
|
Returns the i'th gaussian |
|
|
Returns the number of gaussians in the GMM |
|
|
Randomly init the GMM with a list (STL vector) of frames |
|
||||||||||||
|
Performs k-means training |
|
||||||||||||
|
Performs k-means training (using another GMM to score) |
|
|
Score a list (STL vector) of frames against the GMM without using the covariances (nearest euclidian distance) |
|
||||||||||||
|
Score a frame against the GMM without using the covariances (nearest euclidian distance) |
|
|
print function used for operator << Implements FD::Object. |
|
|
Read function used for operator >> Reimplemented from FD::Object. |
|
|
Converts the GMM from real mode to accum mode and set everything to zero |
|
|
|
|
splits the largest gaussian in two |
|
|
Converts the GMM from accum mode to real mode |
|
||||||||||||
|
extractor for GMM |
|
|
STL vector containing all the apriori weights of the gaussians |
|
|
Number of dimensions |
|
|
STL vector containing all the gaussian IDs in the GMM |
|
|
STL vector containing all the gaussians in the GMM |
|
|
Whether of not the GMM trained (like real/accum mode) (GMM_Mode) |
|
|
Number of frames aligned to (used to train) the GMM |
|
|
Number of gaussians in the GMM |
|
|
Was the gaussian loaded using indexes for mean |
1.4.4