#include <gmm.h>
Inheritance diagram for FD::GMM:


Public Types | |
| enum | GMM_Mode { real, accum } | 
Public Member Functions | |
| GMM (int nb_gauss, int dim, Covariance *(*cov_new)(int)) | |
| nb_gaussians (0) | |
| mode (accum) | |
| nb_frames_aligned (0) | |
| dimensions (1) | |
| using_gaussianIDs (false) | |
| void | save (std::string file) | 
| int | get_nb_gaussians () const | 
| Gaussian & | gaussian (int i) const | 
| void | accum_to_gaussian (int i, const float *fr) | 
| void | init (std::vector< float * > frames) | 
| void | kmeans1 (std::vector< float * > frames, int nb_iterations=1) | 
| void | split1 () | 
| void | kmeans2 (std::vector< float * > frames, GMM *gmm) | 
| void | adaptMAP (std::vector< float * > frame, GMM *gmm) | 
| void | to_real () | 
| void | reset_to_accum_mode () | 
| Score | minDistance (float *fr, Covariance *cov) const | 
| Score | score (float *fr) const | 
| void | binary_split () | 
| std::vector< Score > | minDistance (std::vector< float * > fr) const | 
| std::vector< Score > | score (std::vector< float * > fr) const | 
| void | toIDsUsing (GaussianSet &gauss) | 
| void | toPtrsUsing (const GaussianSet &gauss) | 
| DiagGMM * | createDiagGMM () | 
| virtual void | printOn (std::ostream &out=std::cout) const | 
| void | readFrom (std::istream &in=std::cin) | 
Public Attributes | |
| __pad0__: gaussians(std::vector<RCPtr<Gaussian> >()) | |
Protected Attributes | |
| std::vector< RCPtr< Gaussian > > | gaussians | 
| std::vector< float > | apriori | 
| int | nb_gaussians | 
| int | mode | 
| int | nb_frames_aligned | 
| int | dimensions | 
| bool | using_gaussianIDs | 
| std::vector< int > | gaussianIDs | 
Friends | |
| std::istream & | operator>> (std::istream &in, GMM &gmm) | 
      
  | 
  ||||||||||||||||
| 
 Construct a GMM with nb_gauss gaussians, dim dimensions and a covariance pseudo-factory  | 
  
      
  | 
  ||||||||||||
| 
 Accumulates (adds) the frame to the i'th gaussian  | 
  
      
  | 
  ||||||||||||
| 
 Perform MAP adaptation (using another GMM to score)  | 
  
      
  | 
  
| 
 Double the number of gaussians  | 
  
      
  | 
  
      
  | 
  
| 
 Returns the i'th gaussian  | 
  
      
  | 
  
| 
 Returns the number of gaussians in the GMM  | 
  
      
  | 
  
| 
 Randomly init the GMM with a list (STL vector) of frames  | 
  
      
  | 
  ||||||||||||
| 
 Performs k-means training  | 
  
      
  | 
  ||||||||||||
| 
 Performs k-means training (using another GMM to score)  | 
  
      
  | 
  
| 
 Score a list (STL vector) of frames against the GMM without using the covariances (nearest euclidian distance)  | 
  
      
  | 
  ||||||||||||
| 
 Score a frame against the GMM without using the covariances (nearest euclidian distance)  | 
  
      
  | 
  
| 
 print function used for operator << Implements FD::Object.  | 
  
      
  | 
  
| 
 Read function used for operator >> Reimplemented from FD::Object.  | 
  
      
  | 
  
| 
 Converts the GMM from real mode to accum mode and set everything to zero  | 
  
      
  | 
  
      
  | 
  
      
  | 
  
| 
 splits the largest gaussian in two  | 
  
      
  | 
  
| 
 Converts the GMM from accum mode to real mode  | 
  
      
  | 
  ||||||||||||
| 
 extractor for GMM  | 
  
      
  | 
  
| 
 STL vector containing all the apriori weights of the gaussians  | 
  
      
  | 
  
| 
 Number of dimensions  | 
  
      
  | 
  
| 
 STL vector containing all the gaussian IDs in the GMM  | 
  
      
  | 
  
| 
 STL vector containing all the gaussians in the GMM  | 
  
      
  | 
  
| 
 Whether of not the GMM trained (like real/accum mode) (GMM_Mode)  | 
  
      
  | 
  
| 
 Number of frames aligned to (used to train) the GMM  | 
  
      
  | 
  
| 
 Number of gaussians in the GMM  | 
  
      
  | 
  
| 
 Was the gaussian loaded using indexes for mean  | 
  
 1.4.4